问题描述 在 JavaScript 中整数和浮点数都属于 Number 数据类型,所有数字都是以 64 位浮点数形式储存,即便整数也是如此。 所以我们在打印 1.00 这样的浮点数的结果是 1 而非 1.00 。在一些特殊的数值表示中,例如金额,这样看上去有点变扭,但是至少值是正确了。然而要命的是,当浮点数做数学运算的时候,你经常会发现一些问题,举几个例子: JavaScript 代码: // 加法 ===================== // 0.1 + 0.2 = 0.30000000000000004 // 0.7 + 0.1 = 0.7999999999999999 // 0.2 + 0.4 = 0.6000000000000001 // 2.22 + 0.1 = 2.3200000000000003 // 减法 ===================== // 1.5 - 1.2 = 0.30000000000000004 // 0.3 - 0.2 = 0.09999999999999998 // 乘法 ===================== // 19.9 * 100 = 1989.9999999999998 // 19.9 * 10 * 10 = 1990 // 1306377.64 * 100 = 130637763.99999999 // 1306377.64 * 10 * 10 = 130637763.99999999 // 0.7 * 180 = 125.99999999999999 // 9.7 * 100 = 969.9999999999999 // 39.7 * 100 = 3970.0000000000005 // 除法 ===================== // 0.3 / 0.1 = 2.9999999999999996 // 0.69 / 10 = 0.06899999999999999 计算过程 比如在 JavaScript 中计算 0.1 + 0.2时,到底发生了什么呢? 首先,十进制的0.1和0.2都会被转换成二进制,但由于浮点数用二进制表达时是无穷的,例如。 JavaScript 代码: 0.1 -> 0.0001100110011001...(无限) 0.2 -> 0.0011001100110011...(无限) IEEE 754 标准的 64 位双精度浮点数的小数部分最多支持 53 位二进制位,所以两者相加之后得到二进制为: JavaScript 代码: 0.0100110011001100110011001100110011001100110011001100 因浮点数小数位的限制而截断的二进制数字,再转换为十进制,就成了 0.30000000000000004。所以在进行算术计算时会产生误差。 整数的精度问题 在 Javascript 中,整数精度同样存在问题,先来看看问题: JavaScript 代码: console.log(19571992547450991); //=> 19571992547450990 console.log(19571992547450991===19571992547450992); //=> true 同样的原因,在 JavaScript 中 Number类型统一按浮点数处理,整数是按最大54位来算最大(253- 1,Number.MAX_SAFE_INTEGER,9007199254740991) 和最小(-(253 - 1),Number.MIN_SAFE_INTEGER,-9007199254740991) 安全整数范围的。所以只要超过这个范围,就会存在被舍去的精度问题。 当然这个问题并不只是在 Javascript 中才会出现,几乎所有的编程语言都采用了 IEEE-745 浮点数表示法,任何使用二进制浮点数的编程语言都会有这个问题,只不过在很多其他语言中已经封装好了方法来避免精度的问题,而 JavaScript 是一门弱类型的语言,从设计思想上就没有对浮点数有个严格的数据类型,所以精度误差的问题就显得格外突出。 解决方案 上面说了这么多问题和原因,这里给出一些解决方案。 类库 通常这种对精度要求高的计算都应该交给后端去计算和存储,因为后端有成熟的库来解决这种计算问题。前端也有几个不错的类库: Math.js Math.js 是专门为 JavaScript 和 Node.js 提供的一个广泛的数学库。它具有灵活的表达式解析器,支持符号计算,配有大量内置函数和常量,并提供集成解决方案来处理不同的数据类型 像数字,大数字(超出安全数的数字),复数,分数,单位和矩阵。 功能强大,易于使用。 decimal.js 为 JavaScript 提供十进制类型的任意精度数值。 big.js 这几个类库帮我们解决很多这类问题,不过通常我们前端做这类运算通常只用于表现层,应用并不是很多。所以很多时候,一个函数能解决的问题不需要引用一个类库来解决。 下面介绍各个更加简单的解决方案。 整数表示 对于整数,我们可以通过用String类型的表示来取值或传值,否则会丧失精度。 格式化数字、金额、保留几位小数等 如果只是格式化数字、金额、保留几位小数等 浮点数运算 toFixed() 方法 浮点数运算的解决方案有很多,这里给出一种目前常用的解决方案, 在判断浮点数运算结果前对计算结果进行精度缩小,因为在精度缩小的过程总会自动四舍五入。 toFixed() 方法使用定点表示法来格式化一个数,会对结果进行四舍五入。语法为: JavaScript 代码: numObj.toFixed(digits) 参数 digits 表示小数点后数字的个数;介于 0 到 20 (包括)之间,实现环境可能支持更大范围。如果忽略该参数,则默认为 0。 返回一个数值的字符串表现形式,不使用指数记数法,而是在小数点后有 digits 位数字。该数值在必要时进行四舍五入,另外在必要时会用 0 来填充小数部分,以便小数部分有指定的位数。 如果数值大于 1e+21,该方法会简单调用 Number.prototype.toString()并返回一个指数记数法格式的字符串。 特别注意:toFixed() 返回一个数值的字符串表现形式。 具体可以查看 MDN中的说明,那么我们可以这样解决精度问题: JavaScript 代码: parseFloat((数学表达式).toFixed(digits)); // toFixed() 精度参数须在 0 与20 之间 // 运行 parseFloat((1.0 - 0.9).toFixed(10)) // 结果为 0.1 parseFloat((0.3 / 0.1).toFixed(10)) // 结果为 3 parseFloat((9.7 * 100).toFixed(10)) // 结果为 970 parseFloat((2.22 + 0.1).toFixed(10)) // 结果为 2.32